Your (Environment Clearance) application has been Submitted with following details			
Proposal No	IA/OR/IND/59484/2016		
Compliance ID	19991322		
Compliance Number(For Tracking)	EC/M/COMPLIANCE/19991322/2024		
Reporting Year	2024		
Reporting Period	01 Jun(01 Oct - 31 Mar)		
Submission Date	30-05-2024		
IRO Name	ARTATRANA MISHRA		
IRO Email	jhk109@ifs.nic.in		
State	ODISHA		
IRO Office Address	Integrated Regional Offices, Bhubaneswar		
Note:- SMS and E-Mail has been sent to ARTATRANA MISHRA, ODISHA with Notification to Project Proponent.			

DDSP/MOEFCC/001/2024-033 May 28, 2024.

To,

The Addl. Principal Chief Conservator of Forests (C), Ministry of Environment, Forest & Climate Change, Integrated Regional Office (EZ), A/3, Chandrasekharpur, Bhubaneswar – 751 023.

Sub: Submission of Six-Monthly Compliance Report of the Environmental Clearance for M/s Dalmia Cement Bharat Limited (Dalmia DSP Unit), At/Po. - Rajgangpur, Dist.-Sundargarh, Odisha for the period October-2023 to March-2024.

Ref: Environmental Clearance vide File No. J-11011/232/2016- 1A II (I) dated 16.02.2018.

Dear Sir,

With reference to above captioned subject matter, we are submitting herewith the six-monthly compliance report of the conditions laid down in above Environmental clearance for M/s Dalmia Cement Bharat Limited (Dalmia DSP Unit), At/Po. - Rajgangpur, Dist.- Sundargarh, Odisha for the period October-2023 to March-2024.

Thanking you,

Yours sincerely, For Dalmia Cement Bharat Limited,

with.

Ashok Kumar Mishra Head - Environment

Encl: As above.

.1

- CC: 1. The Director, Impact Assessment Division, MoEF&CC, New Delhi.
 - 2. The Member Secretary, CPCB, New Delhi.
 - 3. The Member Secretary, OSPCB, Bhubaneswar, Odisha.

Dalmia Cement (Bharat) Limited

Rajgangpur, Sundargarh - 770 017, Odisha, India T +91 6624 220 121 Toll Free 1800 2020 W www.dalmiacement.com CIN: U65191TN1996PLC035963 Registered Office: Dalmiapuram, District Tiruchirappalli - 621 651, Tamil Nadu, India A **Dalmia Bharat Group** company. www.dalmiabharat.com

Half Yearly Compliance Report 2024 01 Jun(01 Oct - 31 Mar) Acknowledgment			
Proposed Cement Plant (Dalmia DSP Unit) - Clinker 3.0Proposal NameMTPA, Cement 2.25 MTPA, WHRS (15 MW) and DGSet (1000 KVA) by Dalmia Cement Bharat Limited at Village & Tehsil - Rajgangpur, District - Sundargarh, Odisha.			almia DSP Unit) - Clinker 3.0 A, WHRS (15 MW) and DG a Cement Bharat Limited at gpur, District - Sundargarh,
Name of Entity / Corpora	te Office	Dalmia Cement (Bharat) Limited	
Village(s)		N/A	
District		SUNDARGARH	
Proposal No.	IA/OR/IND/59484/2016	Category	Industrial Projects - 2
Plot / Survey / Khasra N/A		Sub-District	N/A
State	ODISHA	Entity's PAN	NA
MoEF File No. J-11011/232/2016-IA.II (I)		Entity name as per PAN	NA

Compliance Reporting Details

Reporting Year	2024
Remarks (if any)	
Reporting Period	01 Jun(01 Oct - 31 Mar)

Details of Production and Project Area

Name of Entity / Corporate Office	Dalmia Cement (Bharat) Limited
--------------------------------------	--------------------------------

	Project Area as per EC Granted	Annual Project Area in Possession
Private	0	0
Revenue Land	0	0
Forest	0	0
Others	0	0
Total	0	0

Production Capacity

Sr. no	Product Name	units	Valid Upto	Capacity	Production last year	Capacity as per CTO
1	Clinker	Tons per Annum (TPA)	31/03/2025	3000000	2589498	3000000
2	WHRB	MW	31/03/2025	15	75319	15

Conditions

Specific Conditions

Sr.No.	Condition Type	Condition Details	
1	Corporate Environmental Responsibility	1. An amount of Rs 46.00 Crores proposed towards F Social Commitment (ESC) shall be utilized as capital e project mode. The project shall be completed in concur implementation of the expansion and estimated on the	Enterprise expenditure in rrence with the basis of
PPs Su The amo	ubmission: Being Complied bunt towards ESC is being utilized tow	Scheduled Rates.	Date: 30/05/2024
2	GREENBELT	Green belt shall be developed in 12.95 Ha equal to 33 area with a native tree species in accordance with CPC The greenbelt shall inter alia cover the entire periphery The plantation shall be completed within one year form issue of EC. In addition to this 1500 additional plants s within the premises.	3% of the plan B guidelines. of the plant. n the date of shall be planted
PPs Su Green co control. whereve	abmission: Being Complied over has been developed with native s Around 14251 saplings have been pla r required and steps are being taken to	pecies plantation including Bamboo saplings for dust inted in FY 2023-24. Gap filling is being done to increase the survival rate beyond 90%.	Date: 30/05/2024
3	WASTE MANAGEMENT	4. Kitchen waste shall be composted or convened to further use.	biogas for
PPs Su Mechani gardenin	abmission: Complied ical bio-digester is in place for conver ig and horticulture purposes.	ting kitchen waste into manure for further utilization in	Date: 30/05/2024
PPs Su Mechani gardenin 4	abmission: Complied ical bio-digester is in place for conver ig and horticulture purposes. ENERGY PRESERVATION MEASURES	ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power re for energy conservation.	Date: 30/05/2024 ecovery system
PPs Su Mechani gardenin 4 PPs Su Slip pow	abmission: Complied ical bio-digester is in place for converting and horticulture purposes. ENERGY PRESERVATION MEASURES abmission: Complied ver recovery system has been adopted	 ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power refor energy conservation. 	Date: 30/05/2024 ecovery syster Date: 30/05/2024
PPs Su Mechani gardenin 4 PPs Su Slip pow	abmission: Complied ical bio-digester is in place for converting and horticulture purposes. ENERGY PRESERVATION MEASURES abmission: Complied ver recovery system has been adopted MISCELLANEOUS	 ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power refor energy conservation. for energy conservation. Detailed study of the fauna in the study area shall be within one year. If Schedule-I species are found, then c plan for Schedule-I species be prepared and implement consultation with state forest department. The PP shall necessary financial resources for implementation of the 	Date: 30/05/2024 ecovery system Date: 30/05/2024 carried out conservation ted in provide e plan.
PPs Su Mechani gardenin 4 PPs Su Slip pow 5 PPs Su No Sche	abmission: Complied ical bio-digester is in place for converting and horticulture purposes. ENERGY PRESERVATION MEASURES abmission: Complied ver recovery system has been adopted MISCELLANEOUS abmission: Complied ver recovery system has been adopted	 ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power refor energy conservation. for energy conservation. Detailed study of the fauna in the study area shall be within one year. If Schedule-I species are found, then c plan for Schedule-I species be prepared and implement consultation with state forest department. The PP shall necessary financial resources for implementation of the manual state. 	Date: 30/05/2024 ecovery syster Date: 30/05/2024 carried out conservation ted in provide e plan. Date: 30/05/2024
PPs Su Mechani gardenin 4 PPs Su Slip pow 5 PPs Su No Sche 6	abmission: Complied ical bio-digester is in place for converting and horticulture purposes. ENERGY PRESERVATION MEASURES abmission: Complied ver recovery system has been adopted MISCELLANEOUS abmission: Complied dule I species have been found withir WATER QUALITY MONITORING AND PRESERVATION	ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power refor energy conservation. for energy conservation. Detailed study of the fauna in the study area shall be within one year. If Schedule-I species are found, then c plan for Schedule-I species be prepared and implement consultation with state forest department. The PP shall necessary financial resources for implementation of the n the project area. No ground water shall be used for plant & township	Date: 30/05/2024 ecovery system Date: 30/05/2024 carried out conservation ted in provide e plan. Date: 30/05/2024
PPs Su Mechani gardenin 4 PPs Su Slip pow 5 PPs Su No Sche 6 PPs Su Ground	abmission: Complied ical bio-digester is in place for converting and horticulture purposes. ENERGY PRESERVATION MEASURES abmission: Complied ver recovery system has been adopted MISCELLANEOUS abmission: Complied dule I species have been found withir WATER QUALITY MONITORING AND PRESERVATION abmission: Complied	ting kitchen waste into manure for further utilization in 5. The project proponent shall adopt the slip power rafor energy conservation. for energy conservation. Detailed study of the fauna in the study area shall be within one year. If Schedule-I species are found, then a plan for Schedule-I species be prepared and implement consultation with state forest department. The PP shall necessary financial resources for implementation of the number of the project area. No ground water shall be used for plant & township	Date: 30/05/2024 ecovery syster Date: 30/05/2024 carried out conservation ted in provide e plan. Date: 30/05/2024 Date: 30/05/2024

	5.00 Crores towards the environmental protection measures shall be earmarked separately. The funds so provided shall not be diverted fo any other purpose.		
PPs S The cap towards for envi	ubmission: Complied ital cost of 95 Crores earmarked for en implementation of environment mana ronment management at plant site.	nvironmental protection measures has been spent agement plan. More than 5 Cr is being spent annually	Date: 30/05/2024
General (Conditions		
Sr.No.	Condition Type	Condition Details	
1	WATER QUALITY MONITORING AND PRESERVATION	a) Adhere to "zero liquid discharge";	
PPs S Cement recyclin	ubmission: Being Complied manufacturing being a dry process, no g of cooling wastewater post treatmer	o such effluent is generated There is a continuous at in a closed loop. No such discharge is envisaged.	Date: 30/05/2024
2	2 ENERGY PRESERVATION MEASURES 6 (b) make efforts to achieve power consumption less than 65 units/tonne for Portland Pozzolona Cement (PPC) and 85 units/to for Ordinary Portland Cement (OPC) production and thermal en- consumption of 670 Kcal/Kg of clinker;		
PPs S Efforts a KWh/ T	ubmission: Complied are being made to reduce the power co TPPC – 32.2 KWh/T Clinker – 44.4 K	onsumption as per the stipulated norms. PSC – 43.6 Wh/T	Date: 30/05/2024
3	AIR QUALITY MONITORING AND PRESERVATIONc. Carryout Continuous Ambient Air Quality monitoring as pe National Ambient Air Quality Standards issued by the Ministry G.S.R.No. 826(E) dated I6th November 2009 (as amended from to time) within and outside the plant area at least at four location covering upwind and downwind directions at an angle of 120 de each; and		ring as per Ministry vide aded from time ar locations of 120 degree
PPs S Continu location to Board	ubmission: Complied ous Ambient Air Quality Monitoring s covering upwind and downwind dire l server.	(CAAQM) System have been installed at four ections. Online data is being continuously transmitted	Date: 30/05/2024
4	AIR QUALITY MONITORING AND PRESERVATION	d. Submit monitoring report to Regional Office of M Zonal office of CPCB and Regional Office of SPCB al monthly monitoring report.	oEF&CC, long with six-
PPs S Six mor and SPC	PPs Submission: CompliedDate:Six monthly compliance report along with monitoring results are submitted to MOEF&CC, CPCB30/05/20and SPCB periodically. Monitoring Report attached.30/05/20		
5	WATER QUALITYb) submit monitoring report to Regional Office of MoEF&CC,5MONITORING AND PRESERVATIONZonal office of CPCB and Regional Office of SPCB along with six- monthly monitoring report.		
PPs S Six mor periodic	ubmission: Complied thly compliance report along with mo ally.	onitoring results are submitted to statutory bodies	Date: 30/05/2024
6	AIR QUALITY	a) Provide appropriate Air Pollution Control (APC) s	system for all

Address: IA Division, Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Jor Bagh New Delhi - 110003

	MONITORING AND PRESERVATION	the dust generating points including fugitive dust from sources;	all vulnerable	
PPs Submission: Complied Air Pollution Control (APC) system such as Bag filters have been installed at major dust generating points and are operating efficiently.				
 7	AIR QUALITY MONITORING AND PRESERVATION	b) Design suitable capacity of bag filters to handle ga 150% of the normal flow from process/ from suction h achieve particulate emission to less than 30 mg/N m3.	as/air shall be oods to	
PPs Su Bag filte installed	Ibmission: Complied rs have been adequately sized to hand to control the PM emissions below 30	le more than 100% gas flow from process and) mg/Nm3.	Date: 30/05/2024	
8	AIR QUALITY MONITORING AND PRESERVATION	c) Provide leakage detection and mechanized bag cle for better maintenance of bags:	aning facilities	
PPs Su All Prim facilities	Ibmission: Complied ary Bag Houses/filters have been prov for better maintenance of bags	vided with leakage detection and mechanized cleaning	Date: 30/05/2024	
9	AIR QUALITY MONITORING AND PRESERVATION	d) Provide pollution control system in the cement pla CREP Guidelines of CPCB;	nt as per the	
PPs Su CREP gu	ibmission: Complied aidelines of CPCB w.r.t Cement Plant	is being adhered to.	Date: 30/05/2024	
10	AIR QUALITY MONITORING AND PRESERVATION	e) Provide sufficient number of mobile or stationery cleaners to clean plant roads, shop floors, roofs regular	vacuum ly;	
PPs Su 3 nos. of plant roa	Ibmission: Complied small and 1 no. of truck mounted mea ds, shop floors, roofs etc along with in	chanized road sweepers have been deployed to clean ndustrial vacuum cleaners at shop floor.	Date: 30/05/2024	
11	AIR QUALITY MONITORING AND PRESERVATION	f) Recycle and reuse lime fines. coal fines and such of collected in the pollution control devices and vacuum of devices in the process after agglomeration;	other fines cleaning	
PPs Su Lime and system.	bmission: Complied d coal fines collected in the pollution of	control devices are recycled and reused back into the	Date: 30/05/2024	
12	AIR QUALITY MONITORING AND PRESERVATION	g) Use leak proof trucks/dumpers for carrying coal an materials and shall cover them with tarpaulin. Use close carrying fly ash;	nd other raw ed bulkers for	
PPs Su Tarpauli for fly as	Ibmission: Complied n covered trucks are used for carrying h.	coal and other raw materials. Closed bulkers are used	Date: 30/05/2024	
13	AIR QUALITY MONITORING AND PRESERVATION	h) Provide wind shelter fence and chemical spraying material stock piles:	on the raw	

PPs S Wind S emissio	ubmission: Complied helter fence near raw material stockpile ns.	es have been provided to control the fugitive	Date: 30/05/2024	
14	AIR QUALITYi) Provide Low NOx burners to control NOx emissions. calibration of the instruments must be ensured. If needed. be controlled by using SCR/NSCR technologies:			
PPs S Low No	ubmission: Complied Dx burners have been installed to contr	ol NOx emissions within the prescribed standard.	Date: 30/05/2024	
15	AIR QUALITY MONITORING AND PRESERVATION	j) Have separate truck parking area and monitor ve at regular interval.	hicular emissions	
PPs S A separ regular	ubmission: Complied ate designated truck parking area is in basis.	place and vehicular emissions are monitored on	Date: 30/05/2024	
16	WATER QUALITY MONITORING AND PRESERVATION	b) Provide Sewage Treatment Plant for domestic v	vastewater	
PPs S Domes	ubmission: Complied ic wastewater is treated in Sewage Tre	atment Plant (STP).	Date: 30/05/2024	
17	WATER QUALITYc) Provide garland drains and collection pits for each arrest the run-off in the event of heavy rains and to che pollution due to surface run off.		ch stock pile to heck the water	
PPs S Garlanc to surfa	ubmission: Complied drains with collection pits have been p ce run off.	provided at stockpile area to check water pollution due	Date: 30/05/2024	
18	WATER QUALITY MONITORING AND PRESERVATION	a) Practice rainwater harvesting to maximum poss	ble extent;	
PPs S Rainwa in earth	ubmission: Complied ter harvesting system has been installed en reservoir for further treatment and r	d on office roof buildings. Surface run off is collected euse.	Date: 30/05/2024	
19	WATER QUALITY MONITORING AND PRESERVATION	b) Provide water meters at the inlet to all unit proc cement plants:	esses in the	
PPs S Water r	PPs Submission: Complied Water meters have been installed at all units.			
20	20WATER QUALITY MONITORING AND PRESERVATIONc) Make efforts to minimize water consumption in the steel complex by segregation of used water, practicing cascade us recycling treated water.			
PPs S Cement cooling	ubmission: Complied manufacturing being a dry process, we purpose and dust suppression.	ater is recycled back into the system post treatment for	Date: . 30/05/2024	

21	ENERGY PRESERVATION MEASURES	6 (a) provide Waste heat recovery system for kiln and	l cooler;		
PPs Su 15 MW	PPs Submission: CompliedDate: 30/05/20215 MW of Waste Heat Recovery System is in place for Kiln and cooler.30/05/202				
22	22AIR QUALITY MONITORING AND PRESERVATIONa. Install 24x7 continuous emission monitoring system stacks to monitor stack emission with respect to paramet 				
PPs Su Continue and are o	Ibmission: Complied ous Emission Monitoring System (CE connected to the Board server.	MS) have been installed in all main stacks of our plant	Date: 30/05/2024		
23	AIR QUALITY MONITORING AND PRESERVATION	b. Monitor fugitive emissions in the plant premises;			
PPs Su Fugitive	Ibmission: Complied emissions are being monitored withir	n plant premises on a regular basis.	Date: 30/05/2024		
24	24 Statutory compliance 25 (f) submit six monthly reports on the status of the compliance the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Office of MoEF&CC, the respective Zonal Office of CP and the SPCB:				
PPs Su Six mon bodies p	Ibmission: Complied thly compliance reports including rest eriodically.	ults of monitored data are submitted to the statutory	Date: 30/05/2024		
25	Statutory compliance	25 (g) submit the environmental statement for each fr Form-V to the concerned State Pollution Control Board under the Environment (Protection) Rules. 1986, as am subsequently and put on the website of the company;	nancial year in d as prescribed hended		
PPs Su Environi been upl	Ibmission: Complied nental Statement in Form V has been oaded on company website as well.	submitted to OSPCB on 23.09.2023. The same has	Date: 30/05/2024		
26	26 Statutory compliance 25 (h) inform the Regional Office as well as the Ministry, the data of financial closure and final approval of the project by the conce authorities and the date of commencing the land development wo				
PPs Submission: Complied Project was executed in October 2018. We have obtained consent to establish (CTE) & consent to operate (CTO) from State Pollution Control Board, Odisha for the commencement of operation since December 2019.			Date: 30/05/2024		
27	27 MISCELLANEOUS 26. The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.				
PPs Submission: Complied Date: 30/05/2024 Noted and agreed. 30/05/2024					

28	3 MISCELLANEOUS 27. The Ministry reserves the right to stipulate additional conditions if found necessary. The Company in a time bound manner shall implement these conditions.		onal conditions mer shall	
PP: Note	Submission: Complied d and will be complied.		Date: 30/05/2024	
29	29 PUBLIC HEARING 29 PUBLIC HEARING 29 PUBLIC HEARING 29 PUBLIC HEARING 29 PUBLIC HEARING 29 PUBLIC HEARING 28. The project proponent shall abide by all the comm recommendations made in the EIA/EMP report and that presentation to the EAC. The commitment made by the proponent to the issue raised during Public Hearing sha implemented by the proponent.			
PP: All c	Submission: Being Complied pommitments and recommendations made	e in the EIA/EMP report are being implemented.	Date: 30/05/2024	
30	30MISCELLANEOUS29. The above conditions shall be enforced. inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act. 1974, the Air (Prevention & Control of Pollution) Act,1981. the Environment (Protection) Act. 1986, Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 and the Public Liability Insurance Act, 1991 along with their amendments and rules.			
PPs Submission: Complied Date: 30/05/202 Noted and agreed. 30/05/202				
31	31 MISCELLANEOUS 30. Any appeal against this EC shall lie with the National Green Tribunal, if preferred, within a period of 30 days as prescribed under Section 16 of the National Green Tribunal Act. 2010.			
PP: Note	Submission: Complied d and agreed.		Date: 30/05/2024	
32	2 (a) Install 24x7 continuous effluents monitoring system at all the discharge points to monitor treated effluents with respect to parameters prescribed in G.S.R. No. 612 (E) dated 25th August. 201 and subsequent amendment dated 9th May, 2016 and 10th May 201 as amended from time to time; S.O.3305 (E) dated 7th December 2015 for thermal power plants as amended from time to time as amended from time to time;			
PPs Ceme recyc	Submission: Complied ent manufacturing being a dry process, n ling of cooling wastewater post treatmen	o such effluent is generated There is a continuous nt in a closed loop. No such discharge is envisaged.	Date: 30/05/2024	
 Human Health Environment 7. Efforts shall be made to reduce impact of the transport of the materials and end products on the surrounding environment inclu agricultural land by the use of covered conveyor belts/railways as mode of transport. 		port of the raw ment including railways as a		
PP: Lime conve	Submission: Complied stone from the mines to the cement plan eyor system (CCBC).	t is transported through closed cross country belt	Date: 30/05/2024	
34	WASTE MANAGEMENT	8. Used refractories shall be recycled as far as possib	le.	
1				

PPs Submission: Complied Used refractories are recycled to the maximum extent possible.						
35	GREENBELT	9. The PP shall prepare GHG emissions inventory shall submit the program for reduction of the same i sequestration including plantation.	for the plant and ncluding carbon			
PPs Su GHG em alternate raw mate in planta	Ibmission: Being Complied hissions inventory for the plant has been fuel. b. Increase in solar power plant erials. d. Maximize transportation of c tion and green cover.	en prepared. a. Maximum co-processing of RDF as capacity. c. EV truck deployment for transportation of cement and clinker through railway rakes. e. Increase	Date: f 30/05/2024			
36Risk Mitigation and Disaster Management10. Emergency preparedness plan based on the Hazard identification and Risk Assessment (HIRA) and Disaster Management Plan shall be implemented.						
PPs Submission: Complied Emergency Preparedness Plan based on HIRA and DMP is in place and mock drills are conducted periodically to ensure effectiveness of its implementation at site.						
37Human Health Environment11. The PP shall Carry-out heat stress analysis for the who work in high temperature work zone and provide I Protection Equipment (PPE) as per the norms of Factor						
PPs Submission: Complied PPEs have been made mandatory and heat stress analysis is being carried out for workmen working in high temperature zone.Date: 30/05/2024						
3812. The PP shall adhere to the corporate environmental policy and system of the reporting of any infringements/ non-compliance of EC conditions at least once in a year to the Board of Directors and the copy of the board resolution shall be submitted to the MoEF&CC a part of six-monthly report.						
PPs Su Corporate condition	Ibmission: Complied the Environment Policy is in place and the are reviewed at Board of Directors	is being adhered to. Any gaps in compliance of EC level.	Date: 30/05/2024			
39	Corporate Environmental Responsibility	13. All the recommendations made in the Charter Responsibility for Environment Protection (CREP) plants shall be implemented.	on Corporate for the cement			
PPs Su All recor	Ibmission: Complied nmendations made in the CREP Char	ter w.r.t cement plants are being adhered to.	Date: 30/05/2024			
40	Statutory compliance	14. A dedicated environmental cell with qualified established. The head of the environment cell shall n the head of the organization.	personnel shall be report directly to			
PPs Su An Envir reporting	Ibmission: Complied ronmental Cell with qualified personn g to the Unit Head.	el is in place with Head of Department directly	Date: 30/05/2024			
41 Human Health Environment Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human Health Human						

	temporary structures to be removed after the completion of the project.				
PPs Su Necessar	ibmission: Complied ry basic infrastructure was provided to	o workers and labour during the construction phase.	Date: 30/05/2024		
42	Statutory compliance	16. The project authorities must strictly adhere to the made by the State Pollution Control Board and the State	stipulations te Government.		
PPs Su Noted ar	Ibmission: Complied ad stipulations by SPCB and State Go	vt. are being adhered to from time to time.	Date: 30/05/2024		
43	Statutory compliance	17. No further expansion or modifications in the plan carried out without prior approval of the Ministry of E Forests and Climate Change (MoEF&CC).	nt shall be nvironment.		
PPs Su Noted. N	PPs Submission: Complied Noted. No expansion/modification will be carried out without prior approval of Ministry.				
44	44 WASTE MANAGEMENT 18. The waste oil, grease and other hazardous shall be as per the Hazardous & Other waste (Management & T Movement) Rules, 2016.				
PPs Su Waste O Rules 20	PPs Submission: Complied Waste Oil, Grease and other Hazardous wastes are being handled and disposed off as per HOWM Rules 2016 and amendments thereof.				
45	45 Risk Mitigation and Disaster Management 19. The storage of NH3 and other hazardous chemicals at shall be as per the provisions of Manufacture, Storage and Hazardous Chemical Rules, 1989 as amended from time to				
PPs Submission: Complied Noted. NH ₃ and other Hazardous Chemicals are being stored properly in designated and earmarked areas.					
46	Noise Monitoring & Prevention	20. The ambient noise levels should conform to the s prescribed under EPA Rules. 1989 viz. 75 dB(A) durin 70 dB(A) during night time.	tandards ng day time and		
PPs Su The amb	Ibmission: Complied ient noise levels monitored conforms	to the prescribed standard.	Date: 30/05/2024		
47	Human Health Environment	21. Occupational health surveillance of the workers so on a regular basis and records maintained as per the Fa	shall be done ctories Act.		
PPs Su The heal as per Fa	PPs Submission: Complied I The health surveillance of the workers is done periodically, and records are maintained for the same as per Factories Act. 30				
48	MISCELLANEOUS	22. The project proponent shall also comply with all environmental protection measures and safeguards rect the EIA/EMP report.	the ommended in		
PPs Su All envir adhered	ibmission: Complied conment protection measures and safe to.	guards as mentioned in EIA/EMP report are being	Date: 30/05/2024		

	49 Human Health Environment 23. Ventilation system shall be designed for adequate air changes as per ACGIH document for all tunnels, motor houses, cement bagging plants.					
	PPs Su Ventilati bagging	Ibmission: Complied on system has been designed for adec plants.	quate air changes in all tunnels, motor houses, cement	Date: 30/05/2024		
	50	WASTE MANAGEMENT	24. Sufficient number of colour coded waste collection constructed at shop floors in each hop to systematically store waste materials generated at the shop floors (othe waste) in designated colored bins for value addition by reuse of such wastes and for good housekeeping.	on bins shall be y segregate and r than Process promoting		
	PPs Su Wastes of bins as a	Ibmission: Complied other than process wastes collected fro good housekeeping practice.	om shop floors are segregated and stored in color coded	Date: 30/05/2024		
	51	Statutory compliance	25 (a) send a copy of environmental clearance letter t Local Bodies, Panchayat, Municipal bodies and relevan the Government:	o the heads of nt offices of		
	PPs Su Copies o Offices.	PPs Submission: Complied Copies of the Environmental Clearance were submitted to heads of local bodies and relevant Govt. Offices.				
	52	52 Statutory compliance 25 (b) put on the clearance letter on the web site of the access to the Public.				
	PPs Submission: Complied Environmental Clearance Letter has been uploaded and made available on company website.					
53Statutory compliance25 (c) inform the public through advertisement within seven d from the date of issue of the clearance letter. at least in two loca newspapers that are widely circulated in the region of which one be in the vernacular language that the project has been accorded environmental clearance by the Ministry and copies of the clear letter are available with the SPCB and may also be seen at Web the Ministry of Environment. Forests and Climate Change (MoEE&CC) at http://envfor.nic.in				n seven days two local which one shall accorded the clearance n at Website of nge		
	PPs Su The gran Odisha T	Ibmission: Complied It of Environmental Clearance to the p Coday and Manthan dated 22.02.2018	project was advertised in two local newspapers i.e.	Date: 30/05/2024		
	54	Statutory compliance	25 (d) upload the status of compliance of the stipulate clearance conditions. including results of monitored da website and update the same periodically	ed environment ta on their		
	PPs Su Status or company	Ibmission: Complied a compliance of EC conditions along v website periodically.	with results of monitored data is uploaded on our	Date: 30/05/2024		
55Statutory compliance25 (e) monitor the criteria pollutants Level namely PM10, S02, NOx (ambient levels as well as stack emissions) or critical sectoral parameters indicated for the projects and display the same at a convenient location for disclosure to the public and put on the website of the company;				M10, S02, ical sectoral me at a on the		

ENERGY PRESERVATION MEASURES ubmission: Complied W of Solar power system has been ins ENERGY PRESERVATION MEASURES ubmission: Complied hts are used in offices as well as for s ENERGY PRESERVATION MEASURES ubmission: Complied im utilization of fly ash as well as slag ENERGY PRESERVATION MEASURES	$ \begin{array}{c} 6 (c) \ \text{prc}\\ \text{solar light}\\ \text{project are}\\ \text{stalled in this}\\ \hline 6 (d) \ \text{prc}\\ \text{and reside}\\ \hline \text{treetlights wi}\\ \hline 6 (e) \ \text{ma}\\ \text{blend as p}\\ \end{array} $ g is done in the function of the functio	by ide solar power generation on roof tops of a system for all common areas, street lights ea and maintain the same regularly; plant. povide the project proponent for LED lights ential areas: ithin the residential areas. eximize utilization of fly ash, slag and sweet ber BIS standards; he cement blend. ximize utilization of alternate fuels and Common common common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common common common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common common common common common common common provide the project proponent for LED lights ential areas: ithin the residential areas. common common commo	of buildings, for s. parking around Date: 30/05/2024 in their offices Date: 30/05/2024 etener in cement Date: 30/05/2024
ubmission: Complied W of Solar power system has been ins ENERGY PRESERVATION MEASURES ubmission: Complied hts are used in offices as well as for s ENERGY PRESERVATION MEASURES ubmission: Complied numission: Complied ubmission: Complied um utilization of fly ash as well as slage ENERGY PRESERVATION MEASURES	stalled in this 6 (d) pro and reside streetlights wi 6 (e) ma blend as p g is done in th 6 (f) ma achieve be	plant. povide the project proponent for LED lights ential areas: ithin the residential areas. eximize utilization of fly ash, slag and sweet ber BIS standards; he cement blend. ximize utilization of alternate fuels and Co	Date: 30/05/2024 in their offices Date: 30/05/2024 etener in cement Date: 30/05/2024
ENERGY PRESERVATION MEASURES ubmission: Complied hts are used in offices as well as for s ENERGY PRESERVATION MEASURES ubmission: Complied um utilization of fly ash as well as slag ENERGY PRESERVATION MEASURES	6 (d) pro and reside streetlights wi 6 (e) ma blend as p g is done in th 6 (f) man achieve be	ovide the project proponent for LED lights ential areas: ithin the residential areas. eximize utilization of fly ash, slag and swee ber BIS standards; he cement blend. ximize utilization of alternate fuels and Co	in their offices Date: 30/05/2024 etener in cement Date: 30/05/2024
ubmission: Complied hts are used in offices as well as for s ENERGY PRESERVATION MEASURES ubmission: Complied im utilization of fly ash as well as slag ENERGY PRESERVATION MEASURES	streetlights wi 6 (e) ma blend as p g is done in tl 6 (f) ma: achieve be	ithin the residential areas. Eximize utilization of fly ash, slag and swee ber BIS standards; he cement blend. ximize utilization of alternate fuels and Co	Date: 30/05/2024 etener in cement Date: 30/05/2024
ENERGY PRESERVATION MEASURES ubmission: Complied um utilization of fly ash as well as slag ENERGY PRESERVATION MEASURES	6 (e) ma blend as p g is done in th 6 (f) mar achieve be	eximize utilization of fly ash, slag and sweet ber BIS standards; he cement blend. ximize utilization of alternate fuels and Co	Date: 30/05/2024
ubmission: Complied im utilization of fly ash as well as slag ENERGY PRESERVATION MEASURES	g is done in the formation of the format	he cement blend. ximize utilization of alternate fuels and Co	Date: 30/05/2024
ENERGY PRESERVATION MEASURES	6 (f) max achieve be	ximize utilization of alternate fuels and Co	
		est practice norms.)-processing to
ubmission: Complied essing of Plastic & Hazardous wastes ent plant.	s with maxim	num utilization of alternate fuels is done in	Date: 30/05/2024
	Visit R	emarks	
Visit Report Date:		N/A	
al Remarks:		The detailed environment monitoring reperiod of October 2023 to March 2024 i	port for the s attached.
	visit Report Date:	nt plant. Visit R Visit Report Date: I Remarks:	It plant. Visit Remarks Visit Report Date: N/A I Remarks: Private Priva

ENVIRONMENTAL MONITORING REPORT

BASED ON DATA GENERATED

FROM

OCTOBER 2023 – MARCH 2024

FOR

DALMIA CEMENT BHARAT LIMITED

At/Po: RAJGANGPUR - 770017, District: SUNDARGARH, ODISHA

Prepared By:

Cleenviron Private Limited D-124, KOELNAGAR, ROURKELA, ODISHA Tele fax: 0661 – 2475746 Email:<u>cleenviron@gmail.com</u>

1. DATA ANALYSIS

1.1 Micro-meteorological Study:

1.1.1 Wind Speed & Wind Direction

During the entire period from 1st October to 31st March all total 4395 no. of data are recorded by the instrument and after interpretation of the collected data it was found that Calm condition prevailed over 6.81%, while considering the 24 hourly data. 6.32% calm condition prevailed from morning 6 hrs to 14hrs for the entire study period, 4.41% calm condition prevailed from 14hrs to 22hrs and 9.06% calm condition prevailed from 22hrs to 06hrs. The predominant wind directions were from SE with average wind speed 2.37 m/sec. The wind rose diagram for the entire study period are depicted on the **Figure No: 1.1, 1.2, 1.3 & 1.4**.

1.1.2 Temperature

The maximum & minimum temperature during the entire study period were divided in to three parts as the study period was covering post-monsoon, winter seasons and early summer season also. The Minimum temperature during the post-monsoon season was found to be 14.45°C and the Maximum temperature was found to be 36.24°C up to the end of 30th November.

The minimum and maximum temperature during the winter season i.e. from December to February was found to be 9.84°C and 33.56°C. During the month of March the minimum and maximum temperature was found to be 10.98°C and 37.45°C. **Table No 1.1** shows a summary of micro-meteorological data collected for the entire period.

1.1.3 Rainfall

The total rain fall from 1st October to 31st March was observed to be 248.8 mm. during the study period. A month wise rainfall data recorded at the site is depicted in **Table No 1.1**.

Table No: 1.1

A SUMMARY OF THE MICRO-METEOROLOGICAL DATA

Project Site	:	Lanjiberna Limestone & Dolomite Mines
Location	:	Magazine Hill Top

SI No	Parameters	From October – March 2024
1	Predominant Wind Direction	From South - East
2	Calm Condition %	6.81%
3	Average Wind Speed m/sec	2.37
4	Temperature °C	
	Post-monsoon Season	
	Minimum	14.45
	Maximum	36.24
	Winter Season	
	Minimum	9.84
	Maximum	33.56
	Early Summer Season	
	Minimum	10.98
	Maximum	37.45
5	Rain Fall in mm	
	October	82.2
	November	35.0
	December	47.6

SI No	Parameters	From October – March 2024
	January	14.8
	February	18.6
	March	50.6
	Total	248.8

Figure No: 1.2 Wind Rose Diagram for 24 Hours

Figure No: 1.2 Wind Rose Diagram from 06 – 14 Hours

Figure No: 1.4 Wind Rose Diagram from 22 – 06 Hours

AMBIENT AIR QUALITY DATA

From 01.10.2023 to 31.03.2024 Station: A-1 (Konark Vihar Area)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
October	10	23	04	15	< 0.1
	11	33	08	21	< 0.1
	27	69	09	21	< 0.1
	21	62	12	31	< 0.1
	22	73	07	30	< 0.1
	23	68	07	30	< 0.1
	29	70	06	21	< 0.1
	26	74	06	17	< 0.1
	19	55	06	22	< 0.1
November	21	62	06	20	< 0.1
	23	66	06	18	< 0.1
	23	63	< 3	12	< 0.1
	22	69	06	18	< 0.1
	24	68	04	14	< 0.1
	20	60	03	17	< 0.1
	25	70	05	17	< 0.1
	26	73	08	16	< 0.1
December	17	49	07	27	< 0.1
	16	40	04	22	< 0.1
	20	62	07	23	< 0.1
	24	75	06	20	< 0.1
	26	72	04	15	< 0.1
	24	71	04	24	< 0.1
	20	67	06	23	< 0.1
	22	70	05	25	< 0.1
	19	55	08	25	< 0.1
January	28	76	04	16	< 0.1
	24	69	06	29	< 0.1
	26	72	05	20	< 0.1
	22	63	03	31	< 0.1
	24	70	07	14	< 0.1
	23	65	04	12	< 0.1
	21	62	08	25	< 0.1
	20	58	05	22	< 0.1
	23	66	06	19	< 0.1
February	26	69	04	13	< 0.1
	24	73	07	28	< 0.1
	23	67	06	30	< 0.1
	22	64	08	22	< 0.1
	20	62	05	24	< 0.1
	25	72	03	25	< 0.1
	27	71	09	29	< 0.1
	21	60	06	26	< 0.1

Months	PM2.5 µg/m³	PM10 µg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m³
March	34	84	05	17	< 0.1
	24	70	05	32	< 0.1
	26	73	06	25	< 0.1
	27	75	06	20	< 0.1
	24	70	06	21	< 0.1
	23	67	03	12	< 0.1
	13	38	09	29	< 0.1
	25	72	04	22	< 0.1
	28	76	07	28	< 0.1

Table No: 2

AMBIENT AIR QUALITY DATA From 01.10.2023 to 31.03.2024 Station: A-2 (General Store Area, Line – 1)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
October	12	30	09	22	< 0.1
	24	69	07	20	< 0.1
	22	67	11	39	< 0.1
	28	76	04	22	< 0.1
	28	79	06	21	< 0.1
	27	77	04	18	< 0.1
	25	76	07	35	< 0.1
	22	67	09	30	< 0.1
	28	77	06	26	< 0.1
November	24	70	04	16	< 0.1
	23	68	08	20	< 0.1
	24	70	04	22	< 0.1
	26	75	08	21	< 0.1
	26	70	04	16	< 0.1
	27	73	06	23	< 0.1
	25	72	05	24	< 0.1
	22	60	03	18	< 0.1
December	19	60	07	29	< 0.1
	25	72	05	20	< 0.1
	23	67	08	28	< 0.1
	24	70	03	11	< 0.1
	23	70	07	24	< 0.1
	21	67	07	22	< 0.1
	26	71	06	23	< 0.1
	20	62	07	25	< 0.1
	22	63	04	25	< 0.1
January	22	62	03	20	< 0.1
	26	70	06	16	< 0.1
	25	72	04	28	< 0.1
	23	67	06	32	< 0.1
	24	73	05	18	< 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
	26	75	08	13	< 0.1
	26	74	09	29	< 0.1
	24	69	05	21	< 0.1
	25	71	07	23	< 0.1
February	26	70	05	17	< 0.1
	21	68	04	24	< 0.1
	19	58	07	21	< 0.1
	25	73	08	29	< 0.1
	23	71	06	35	< 0.1
	27	75	09	28	< 0.1
	22	62	09	30	< 0.1
	24	73	03	23	< 0.1
March	26	71	03	20	< 0.1
	24	70	08	26	< 0.1
	20	62	04	22	< 0.1
	19	56	04	15	< 0.1
	22	68	03	10	< 0.1
	13	37	06	27	< 0.1
	19	63	07	24	< 0.1
	21	65	05	29	< 0.1
	25	74	09	33	< 0.1

Table No: 3

AMBIENT AIR QUALITY DATA From 01.10.2023 to 31.03.2024 Station: A-3 (Material Gate, DSP Unit)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
October	13	38	03	28	< 0.1
	23	64	03	19	< 0.1
	22	71	10	30	< 0.1
	32	81	08	29	< 0.1
	24	68	05	18	< 0.1
	23	70	06	29	< 0.1
	25	79	05	23	< 0.1
	29	82	05	16	< 0.1
	17	52	04	16	< 0.1
November	23	66	05	16	< 0.1
	25	71	08	25	< 0.1
	28	82	05	07	< 0.1
	20	63	05	30	< 0.1
	26	75	07	22	< 0.1
	21	65	05	28	< 0.1
	24	68	06	23	< 0.1
	24	69	09	24	< 0.1
December	17	54	08	27	< 0.1
	27	76	08	22	< 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
	23	66	06	20	< 0.1
	27	79	08	22	< 0.1
	23	61	07	26	< 0.1
	24	71	05	24	< 0.1
	28	77	09	23	< 0.1
	25	73	10	25	< 0.1
	26	70	04	15	< 0.1
January	25	72	06	21	< 0.1
	29	82	04	16	< 0.1
	27	77	03	21	< 0.1
	28	80	07	24	< 0.1
	27	78	08	21	< 0.1
	27	79	06	23	< 0.1
	28	80	10	32	< 0.1
	26	75	07	19	< 0.1
	28	81	05	20	< 0.1
February	29	80	10	31	< 0.1
	28	84	09	34	< 0.1
	27	72	08	20	< 0.1
	24	70	11	26	< 0.1
	26	74	06	22	< 0.1
	25	71	05	25	< 0.1
	25	72	06	20	< 0.1
	23	68	04	23	< 0.1
March	28	79	03	19	< 0.1
	27	77	04	22	< 0.1
	23	67	06	20	< 0.1
	25	71	03	22	< 0.1
	25	72	05	18	< 0.1
	29	80	07	25	< 0.1
	25	73	06	20	< 0.1
	26	78	08	24	< 0.1
	24	75	09	20	< 0.1

Table No: 4

AMBIENT AIR QUALITY DATA From 01.10.2023 to 31.03.2024 Station: A-4 (Near Refractory Main Gate)

PM2.5 **PM10 SO**₂ NO₂ CO Months μg/m³ 05 µg/m³ µg/m³ µg/m³ mg/m³ October 16 43 20 < 0.1 22 68 04 16 < 0.1 80 06 24 < 0.1 28 28 79 06 19 < 0.1 78 29 < 0.1 26 04 72 25 07 22 < 0.1 25 03 69 11 < 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
	24	71	04	16	< 0.1
	26	78	07	32	< 0.1
November	24	67	06	22	< 0.1
	24	72	07	21	< 0.1
	25	73	06	20	< 0.1
	24	68	04	22	< 0.1
	23	63	08	29	< 0.1
	24	78	04	14	< 0.1
	26	75	09	24	< 0.1
	25	70	03	24	< 0.1
December	16	51	05	18	< 0.1
	28	73	04	26	< 0.1
	25	70	08	28	< 0.1
	23	70	05	31	< 0.1
	16	50	04	16	< 0.1
	22	69	03	21	< 0.1
	25	70	05	23	< 0.1
	20	62	06	22	< 0.1
	21	64	07	24	< 0.1
January	23	67	07	20	< 0.1
	27	75	08	26	< 0.1
	26	74	04	35	< 0.1
	22	60	03	28	< 0.1
	24	70	07	17	< 0.1
	23	66	05	17	< 0.1
	24	68	06	21	< 0.1
	25	71	07	23	< 0.1
	24	72	05	27	< 0.1
February	26	75	07	24	< 0.1
	23	68	06	27	< 0.1
	25	69	03	11	< 0.1
	22	65	04	20	< 0.1
	24	71	05	22	< 0.1
	27	76	08	25	< 0.1
	21	68	06	23	< 0.1
	28	74	04	21	< 0.1
March	28	78	06	18	< 0.1
	29	82	05	30	< 0.1
	26	74	08	36	< 0.1
	27	77	04	18	< 0.1
	21	64	04	14	< 0.1
	26	70	08	11	< 0.1
	23	65	07	25	< 0.1
	25	72	03	28	< 0.1
	22	68	06	22	< 0.1

AMBIENT AIR QUALITY DATA

From 01.10.2023 to 29.02.2024 Station: A-5 (Pay Loader Garage Area, Line – 1)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
October	13	40	08	33	< 0.1
	25	75	05	19	< 0.1
	29	78	06	32	< 0.1
	16	49	06	24	< 0.1
	16	55	03	16	< 0.1
	27	73	05	14	< 0.1
	29	78	07	12	< 0.1
	18	62	03	10	< 0.1
	22	68	05	27	< 0.1
November	22	64	07	14	< 0.1
	22	65	03	25	< 0.1
	26	74	03	29	< 0.1
	21	67	05	22	< 0.1
	24	71	09	30	< 0.1
	28	76	04	23	< 0.1
	23	68	06	26	< 0.1
	25	72	06	15	< 0.1
December	23	67	06	15	< 0.1
	22	68	05	18	< 0.1
	29	79	09	27	< 0.1
	22	63	11	33	< 0.1
	22	68	08	28	< 0.1
	25	73	06	22	< 0.1
	26	75	07	24	< 0.1
	24	72	10	20	< 0.1
	24	72	04	23	< 0.1
January	24	68	02	15	< 0.1
	28	79	05	20	< 0.1
	27	77	06	25	< 0.1
	25	71	07	21	< 0.1
	25	70	04	18	< 0.1
	26	76	03	12	< 0.1
	27	80	09	28	< 0.1
	24	69	05	17	< 0.1
	26	75	07	25	< 0.1
February	26	77	07	26	< 0.1
	25	72	06	31	< 0.1
	22	68	05	27	< 0.1
	20	62	08	24	< 0.1
	27	71	08	26	< 0.1
	23	70	04	28	< 0.1
	24	70	07	31	< 0.1
	25	74	03	16	< 0.1

AMBIENT AIR QUALITY DATA

From 01.03.2023 to 31.03.2024 Station: A-5 (B. G Loco Gate, Line – 1)

Months	PM2.5 µg/m³	PM10 µg/m³	SO₂ µg/m³	NO₂ µg/m³	CO mg/m³
March	25	73	03	13	< 0.1
	28	79	06	29	< 0.1
	26	76	03	24	< 0.1
	26	71	07	21	< 0.1
	23	75	08	23	< 0.1
	24	77	09	31	< 0.1
	28	78	07	23	< 0.1
	27	74	05	25	< 0.1
	27	74	05	26	< 0.1

Table No: 7

AMBIENT AIR QUALITY DATA

From 01.10.2023 to 31.03.2024 Station: A-6 (Workshop Area, Line – 2)

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
October	13	37	06	28	< 0.1
	16	46	06	23	< 0.1
	23	65	08	26	< 0.1
	24	75	08	25	< 0.1
	11	32	04	23	< 0.1
	28	87	08	16	< 0.1
	27	86	04	18	< 0.1
	27	77	05	22	< 0.1
	22	66	03	09	< 0.1
November	22	65	07	24	< 0.1
	25	70	08	27	< 0.1
	24	72	04	32	< 0.1
	21	62	03	27	< 0.1
	23	71	08	26	< 0.1
	15	48	10	25	< 0.1
	26	73	05	28	< 0.1
	20	60	06	22	< 0.1
December	26	78	07	26	< 0.1
	20	62	06	26	< 0.1
	22	68	04	20	< 0.1
	24	78	08	27	< 0.1
	22	67	05	19	< 0.1
	26	74	04	22	< 0.1
	22	68	05	22	< 0.1
	23	70	09	23	< 0.1
	25	72	03	20	< 0.1

	PM2.5	PM10	SO ₂	NO ₂	CO
Months	µg/m³	µg/m³	µg/m³	µg/m³	mg/m ³
January	17	48	06	23	< 0.1
	22	62	05	19	< 0.1
	27	74	05	19	< 0.1
	25	71	04	21	< 0.1
	18	51	06	18	< 0.1
	22	65	08	18	< 0.1
	20	58	03	15	< 0.1
	22	63	07	22	< 0.1
	25	72	04	20	< 0.1
February	21	65	07	25	< 0.1
	22	68	04	22	< 0.1
	24	74	08	25	< 0.1
	18	56	07	20	< 0.1
	19	59	06	23	< 0.1
	20	61	05	21	< 0.1
	23	68	11	35	< 0.1
	25	72	09	29	< 0.1
March	23	60	04	15	< 0.1
	24	69	03	13	< 0.1
	23	66	05	29	< 0.1
	21	60	06	23	< 0.1
	20	63	05	19	< 0.1
	18	54	06	19	< 0.1
	27	78	03	10	< 0.1
	22	68	04	12	< 0.1
	25	74	07	20	< 0.1

Table No 8:

STACK EMISSION MONITORING RESULTS

		PM	SO ₂	NO ₂	Hg
Months	Location of sampling	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
October	Coal Mill – 1 Bag Filter	23	-	-	-
	Cooler ESP – 1	19	-	-	-
	CVRM – 1 Bag Filter	09	-	-	-
	CVRM – 2 Bag Filter	07	-	-	-
	CVRM – 3 Bag Filter	08	-	-	-
	Coal Mill – 2 Bag Filter	16	-	-	-
	Cooler ESP – 2	05	-	-	-
	Kiln & VRM ESP – 1	14	43.59	213.49	-
	Kiln & VRM – 2 RABH	13	38.80	211.3	-
	Boiler 1 & 2 ESP Stack	23	339.41	231.88	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	12	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	06	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	05	53.86	204.15	-
November	Coal Mill – 1 Bag Filter	14	-	-	-
	Cooler ESP – 1	09	-	-	-
	CVRM – 1 Bag Filter	06	-	-	-
	CVRM – 2 Bag Filter	05	-	-	-

		PM	SO ₂	NO ₂	Hg
Months	Location of sampling	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	CVRM – 3 Bag Filter	22	-	-	-
	Coal Mill – 2 Bag Filter	24	-	-	-
	Cooler ESP – 2	06	-	-	-
	Kiln & VRM ESP – 1	13	18.22	248.04	-
	Kiln & VRM – 2 RABH	05	25.95	214.29	-
	Boiler 1 & 2 ESP Stack	13	410.94	212.56	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	28	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	07	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	10	74.35	204.04	-
December	CVRM – 1 Bag Filter	08	-	-	-
	CVRM – 2 Bag Filter	06	-	-	-
	CVRM – 3 Bag Filter	07	-	-	-
	Coal Mill – 2 Bag Filter	11	-	-	-
	Cooler ESP – 2	14	-	-	-
	Kiln & VRM – 2 RABH	12	42.06	134.64	-
	Boiler 1 & 2 ESP Stack	24	326.56	241.57	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	26	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	09	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	11	67.66	230.99	-
January	Coal Mill – 1 Bag Filter	23	-	-	-
	Cooler ESP – 1	19	-	-	-
	CVRM – 1 Bag Filter	09	-	-	-
	CVRM – 2 Bag Filter	07	-	-	-
	CVRM – 3 Bag Filter	08	-	-	-
	Coal Mill – 2 Bag Filter	16	-	-	-
	Cooler ESP – 2	05	-	-	-
	Kiln & VRM ESP – 1	14	43.59	213.49	-
	Kiln & VRM – 2 RABH	13	38.80	211.3	-
	Boiler 1 & 2 ESP Stack	23	339.41	231.88	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	12	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	06	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	05	53.86	204.15	-
February	Coal Mill – 1 Bag Filter	13	-	-	-
,	Cooler ESP – 1	16	-	-	-
	CVRM – 1 Bag Filter	08	-	-	-
	CVRM – 2 Bag Filter	06	-	-	-
	CVRM – 3 Bag Filter	09	-	-	-
	Coal Mill – 2 Bag Filter	19	-	-	-
	Cooler ESP – 2	17	-	-	-
	Kiln & VRM ESP – 1	10	24.79	-	-
	Kiln & VRM – 2 RABH	13	27.44	-	_
	Boiler 1 & 2 ESP Stack	36	385.58	214.25	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	11	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	09	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	08	61.66	204.81	-
March	Coal Mill – 1 Bag Filter	15	-	-	-
	Cooler FSP – 1	23	-	-	-
	CVRM – 1 Bag Filter	07	-	-	-
	CVRM – 2 Bag Filter	17	-	-	-

		PM	SO ₂	NO ₂	Hg
Months	Location of sampling	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	CVRM – 3 Bag Filter	13	-	-	-
	Coal Mill – 2 Bag Filter	14	-	-	-
	Cooler ESP – 2	18	-	-	-
	Kiln & VRM ESP – 1	05	22.22	218.66	-
	Kiln & VRM – 2 RABH	08	14.52	188.55	-
	Boiler 1 & 2 ESP Stack	37	308.71	248.77	< 0.02
	Clinker Cooler Attached To ESP(DSP Unit)	13	-	-	-
	Coal Mill Attached To Bag Filter(DSP Unit)	06	-	-	-
	Kiln & Raw Mill RABH (DSP Unit)	07	24.04	158.34	-

Table No 9:

GROUND WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2023

SI	Parameter				Unit	Permissible Limit in absence of		
NO		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL DailyMarket	Tube Well Village Rani Bandha		Alternate Source as per IS 10500: 2012
1	Turbidity	3.9	4.6	5.0	0.70	2.1	NTU	5.0
2	pH Value	6.76	6.66	6.69	6.84	6.35	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	452	184	320	376	308	mg/l	600
4	Iron (as Fe)	0.22	0.12	0.26	0.26	0.10	mg/l	0.3
5	Chlorides (as Cl)	78.84	16.75	50.26	47.30	54.20	mg/l	1000
6	Total Dissolved Solids	540	219	471	495	406	mg/l	2000
7	Electrical Conductivity	900	370	759	788	675	µS/cm	-
8	Calcium (as Ca)	92.99	57.72	80.16	97.79	70.54	mg/l	200
9	Magnesium (as Mg)	53.46	9.72	29.16	32.08	32.08	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	86.03	19.66	89.54	87.50	58.67	mg/l	400
13	Total Nitrate (as NO ₃)	8.75	3.93	3.58	5.49	6.11	mg/l	45
14	Total Alkalinity (as CaCO ₃)	200	120	180	200	160	mg/l	600
15	Acidity	14	14	2.0	14	26	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	17.18	17.54	33.92	23.19	22.06	mg/l	-
18	Potassium (as K)	1.25	2.47	1.15	0.79	1.52	mg/l	-
19	Fluoride (as F)	1.0	0.90	1.0	0.90	0.50	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	20.5	30.4	30.5	30.5	30.5	°C	-
32	Residual Free Chlorine	0.24	0.22	0.16	0.24	0.11	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 10:

GROUND WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2023

SI No	Parameter		F		Unit	Permissible Limit in absence of		
No		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	3.5	0.2	4.4	0.1	0.1	NTU	5.0
2	pH Value	6.59	6.54	6.61	6.81	6.58	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	580	412	308	380	156	mg/l	600
4	Iron (as Fe)	0.28	0.19	0.29	0.27	0.11	mg/l	0.3
5	Chlorides (as Cl)	278.91	61.10	40.40	54.20	34.49	mg/l	1000
6	Total Dissolved Solids	996	496	402	478	207	mg/l	2000
7	Electrical Conductivity	1629	827	647	772	344	µS/cm	-
8	Calcium (as Ca)	176.35	115.43	76.95	96.19	51.30	mg/l	200
9	Magnesium (as Mg)	34.02	30.13	28.19	34.02	6.80	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	141.17	38.13	52.34	100.47	18.68	mg/l	400
13	Total Nitrate (as NO ₃)	157.8	53.48	28.73	14.85	6.23	mg/l	45
14	Total Alkalinity (as CaCO ₃)	148	172	148	240	80	mg/l	600
15	Acidity	30	16	24	20	24	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	39.83	22.12	23.99	19.46	7.96	mg/l	-
18	Potassium (as K)	1.73	2.31	1.33	0.72	0.74	mg/l	-
19	Fluoride (as F)	1.0	0.9	1.0	0.9	0.4	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	27.3	27.2	27.2	27.2	27.3	٥C	-
32	Residual Free Chlorine	0.24	0.16	0.26	0.23	0.22	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 11:

GROUND WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2023

SI No	Parameter		F		Unit	Permissible Limit in absence of		
no		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	3.7	2.5	4.9	0.60	1.9	NTU	5.0
2	pH Value	6.62	6.67	6.52	6.93	6.94	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	580	540	316	368	340	mg/l	600
4	Iron (as Fe)	0.10	0.18	0.10	0.19	0.21	mg/l	0.3
5	Chlorides (as Cl)	261.92	260.92	40.98	55.98	49.98	mg/l	1000
6	Total Dissolved Solids	1030	991	436	534	424	mg/l	2000
7	Electrical Conductivity	1700	1625	702	853	677	µS/cm	-
8	Calcium (as Ca)	181.16	187.57	91.38	125.05	81.76	mg/l	200
9	Magnesium (as Mg)	31.10	17.49	21.38	13.61	33.05	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	140.0	133.53	53.77	84.04	40.21	mg/l	400

SI No	Parameter		F		Unit	Permissible Limit in absence of		
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
13	Total Nitrate (as NO ₃)	40.24	30.14	5.43	25.95	10.87	mg/l	45
14	Total Alkalinity (as CaCO ₃)	320	308	196	200	204	mg/l	600
15	Acidity	48	46	26	26	16	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	48.42	48.61	29.17	26.82	8.55	mg/l	-
18	Potassium (as K)	3.10	3.08	2.59	0.95	4.13	mg/l	-
19	Fluoride (as F)	0.90	0.60	1.0	1.0	0.8	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	21.8	23.2	23.1	21.8	21.8	٥C	-
32	Residual Free Chlorine	0.29	0.18	0.24	0.18	0.20	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 12: GROUND WATER QUALITY RESULT FOR THE MONTH OF JANUARY 2024

SI No	Parameter		F	Results Obtai	ned		Unit	Permissible Limit in absence of
no		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	3.4	3.1	4.6	0.5	0.4	NTU	5.0
2	pH Value	6.59	6.65	6.68	6.86	6.59	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	536	176.70	313.25	392	208.83	mg/l	600
4	Iron (as Fe)	0.12	0.10	0.46	0.19	0.24	mg/l	0.3
5	Chlorides (as Cl)	203.94	11.99	35.98	52.98	32.99	mg/l	1000
6	Total Dissolved Solids	909	215	432	511	252	mg/l	2000
7	Electrical Conductivity	1442	341	680	810	393	µS/cm	-
8	Calcium (as Ca)	193.15	46.68	75.65	117.03	51.51	mg/l	200
9	Magnesium (as Mg)	13.60	14.64	30.25	24.3	19.52	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	157.62	13.46	66.05	93.16	21.87	mg/l	400
13	Total Nitrate (as NO ₃)	41.11	3.93	5.49	0.19	2.23	mg/l	45
14	Total Alkalinity (as CaCO ₃)	252	132	180	164	108	mg/l	600
15	Acidity	36	10	12	16	16	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	39.49	9.12	37.49	32.31	13.54	mg/l	-
18	Potassium (as K)	2.37	2.17	2.36	1.14	1.18	mg/l	-
19	Fluoride (as F)	0.9	0.8	1.0	1.0	0.4	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15

SI No	Parameter		F	Unit	Permissible Limit in absence of			
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	22.3	22.3	22.2	22.2	22.2	°C	-
32	Residual Free Chlorine	0.26	0.24	0.29	0.20	0.19	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 13:

GROUND WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2024

SI No	Parameter		F		Unit	Permissible Limit in absence of		
No		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	3.6	2.4	5.8	0.5	1.9	NTU	5.0
2	pH Value	6.63	6.72	6.69	6.91	6.44	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	393.57	305.22	273.08	397.58	317.26	mg/l	600
4	Iron (as Fe)	0.20	0.14	0.10	0.20	0.22	mg/l	0.3
5	Chlorides (as Cl)	252.92	116.96	45.98	54.98	56.98	mg/l	1000
6	Total Dissolved Solids	941	732	433	530	430	mg/l	2000
7	Electrical Conductivity	1429	11.86	680	842	666	µS/cm	-
8	Calcium (as Ca)	90.13	99.79	70.82	127.16	70.82	mg/l	200
9	Magnesium (as Mg)	40.99	13.66	23.42	19.52	34.15	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	138.95	129.33	61.25	85.36	57.74	mg/l	400
13	Total Nitrate (as NO ₃)	41.6	25.95	4.43	15.46	3.11	mg/l	45
14	Total Alkalinity (as CaCO ₃)	308	332	196	200	184	mg/l	600
15	Acidity	32	64	30	26	24	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	42.65	39.41	27.85	24.72	19.88	mg/l	-
18	Potassium (as K)	2.79	1.25	2.20	1.27	2.58	mg/l	-
19	Fluoride (as F)	1.0	0.6	0.9	1.0	0.8	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	24.7	24.6	24.3	24.7	24.3	٥C	-
32	Residual Free Chlorine	0.26	0.18	0.21	0.19	0.20	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 14:

GROUND WATER QUALITY RESULT FOR THE MONTH OF MARCH 2024

SI No	Parameter		Unit	Permissible Limit in absence of				
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
1	Turbidity	2.8	2.4	4.1	0.40	0.60	NTU	5.0
2	pH Value	7.36	6.84	6.56	6.78	6.59	-	6.5 - 8.5

SI No	Parameter		F		Unit	Permissible Limit in absence of		
		Tube Well Village Liploi	Tube Well Village Surudihi	Tube Well IT Colony	Tube Well OCL Daily Market Gate	Tube Well Village Ranibandha		Alternate Source as per IS 10500: 2012
3	Total Hardness (as CaCO ₃)	420.24	187.68	297.84	350.88	208.08	mg/l	600
4	Iron (as Fe)	0.22	0.12	0.26	0.27	0.11	mg/l	0.3
5	Chlorides (as Cl)	79.83	13.79	35.48	56.17	35.48	mg/l	1000
6	Total Dissolved Solids	565	221	420	498	243	mg/l	2000
7	Electrical Conductivity	897	356	655	788	385	µS/cm	-
8	Calcium (as Ca)	81.76	55.60	65.41	109.59	42.52	mg/l	200
9	Magnesium (as Mg)	52.55	11.89	32.72	18.54	24.79	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	102.40	5.01	52.51	84.73	10.86	mg/l	400
13	Total Nitrate (as NO ₃)	35.44	3.86	2.29	10.85	6.23	mg/l	45
14	Total Alkalinity (as CaCO ₃)	196	144	200	192	136	mg/l	600
15	Acidity	20	16	32	24	20	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	14.40	5.12	27.17	22.96	9.01	mg/l	-
18	Potassium (as K)	2.49	2.45	12.88	1.34	1.46	mg/l	-
19	Fluoride (as F)	1.0	0.90	0.50	0.80	0.40	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	27.3	24.6	27.2	27.4	27.3	°C	-
32	Residual Free Chlorine	0.27	0.18	0.22	0.23	0.22	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 15:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2023

SI	Parameter			Results	Obtained			Unit	Permissible
No		General Office Ground Floor drinking water	Atithi Niwas drinking Water (L – 2)	Drinking Water Near KHD Section Office (L – 1)	Drinking Water NearCooler (Line – 1)	Drinking Water Point VRM Area (Line – 2)	Drinking Water Point General Store		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.40	0.20	1.0	1.90	0.60	0.20	NTU	5.0
2	pH Value	7.45	7.58	7.52	7.61	7.72	7.82	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	136	128	128	140	128	140	mg/l	600
4	Iron (as Fe)	0.29	0.22	0.22	0.20	0.24	0.29	mg/l	0.3
5	Chlorides (as Cl)	11.83	11.83	11.83	12.81	11.83	9.86	mg/l	1000
6	Total Dissolved Solids	165	162	161	163	169	165	mg/l	2000
7	Electrical Conductivity	275	279	281	278	277	281	µS/cm	-
8	Calcium (as Ca)	40.08	35.27	40.08	22.44	35.27	40.08	mg/l	200
9	Magnesium (as Mg)	8.75	9.72	6.80	20.41	9.72	9.72	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	< 0.50	15.15	12.83	15.19	3.45	9.43	mg/l	400
13	Total Nitrate (as NO ₃)	4.91	2.43	2.20	2.24	< 2.20	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	104	88	84	92	120	96	mg/l	600
15	Acidity	04	02	02	04	2.0	04	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	7.50	7.48	7.63	7.15	7.30	7.52	mg/l	-
18	Potassium (as K)	1.27	1.22	1.18	1.17	1.19	1.19	mg/l	-
19	Fluoride (as F)	0.60	0.70	0.70	0.40	0.50	0.90	mg/l	1.5

SI	Parameter			Results	Obtained			Unit	Permissible
No		General Office Ground Floor drinking water	Atithi Niwas drinking Water (L – 2)	Drinking Water Near KHD Section Office (L – 1)	Drinking Water NearCooler (Line – 1)	Drinking Water Point VRM Area (Line – 2)	Drinking Water Point General Store		Limit in absence of Alternate Source as per IS 10500: 2012
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	26.8	26.4	26.4	26.7	27.0	26.2	٥C	-
32	Residual Free Chlorine	0.18	0.22	0.11	0.08	0.11	0.20	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 16:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2023

SI	Parameter			Results	Obtained			Unit	Permissible
No		CCR Ground Floor Canteen Drinking water(L – 1)	CCR First Floor Pantry Drinking Water (L – 2)	HR Office Drinking water Point	General Store Drinking Water Point (Line – 1)	General Office 2nd Floor Drinking Water point	CCR First Floor Pantry Drinking Water (L – 3)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.1	0.1	0.1	0.1	0.1	1.3	NTU	5.0
2	pH Value	7.63	7.86	7.92	7.88	7.99	7.93	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	200	192	204	200	188	192	mg/l	600
4	Iron (as Fe)	0.28	0.29	0.29	0.29	0.11	0.26	mg/l	0.3
5	Chlorides (as Cl)	17.99	16.99	16.99	16.99	17.99	17.99	mg/l	1000
6	Total Dissolved Solids	218	242	220	224	220	219	mg/l	2000
7	Electrical Conductivity	376	380	382	376	380	377	µS/cm	-
8	Calcium (as Ca)	44.88	43.28	35.27	35.27	36.87	51.30	mg/l	200
9	Magnesium (as Mg)	21.38	20.41	28.19	27.22	23.33	15.55	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	< 0.50	21.21	29.25	23.09	20.13	21.15	mg/l	400
13	Total Nitrate (as NO ₃)	3.27	3.05	< 2.20	< 2.20	< 2.20	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	100	140	100	108	120	108	mg/l	600
15	Acidity	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	9.89	9.36	9.68	9.92	10.33	9.88	mg/l	-
18	Potassium (as K)	1.66	1.61	1.66	1.71	1.69	1.68	mg/l	-
19	Fluoride (as F)	0.6	0.5	0.9	0.11	0.3	0.8	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	27.3	27.3	27.3	27.2	27.2	27.2	٥C	-
32	Residual Free Chlorine	0.11	0.12	0.12	0.11	0.10	0.13	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 17:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2023

SI	Parameter			Unit	Permissible Limit				
No		Central Workshop Drinking Water Point (L - 1)	Near Clinker Silo Drinking Water Point (L – 1)	CPP Canteen Drinking Water Point(L – 2)	Workshop Drinking Water Point (Line – 2)	Near Coal Mill Drinking Water Point (L – 3)	General Store Drinking Water Point (L – 3)		in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.50	0.90	1.8	1.0	0.40	0.90	NTU	5.0
2	pH Value	8.12	8.13	8.16	8.11	8.07	8.15	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	208	208	208	208	204	216	mg/l	600
4	Iron (as Fe)	0.20	0.29	0.22	0.25	0.29	0.22	mg/l	0.3
5	Chlorides (as Cl)	18.99	20.99	19.99	19.99	20.99	19.99	mg/l	1000
6	Total Dissolved Solids	269	273	263	264	260	270	mg/l	2000
7	Electrical Conductivity	434	436	422	419	430	429	µS/cm	-
8	Calcium (as Ca)	40.08	52.91	44.89	36.87	51.30	36.87	mg/l	200
9	Magnesium (as Mg)	26.24	18.47	23.33	28.19	18.45	30.13	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	19.98	16.59	15.77	17.29	17.46	19.70	mg/l	400
13	Total Nitrate (as NO ₃)	3.35	3.62	2.87	2.96	4.15	4.95	mg/l	45
14	Total Alkalinity (as CaCO ₃)	172	168	160	164	148	164	mg/l	600
15	Acidity	< 2.0	< 2.0	< 2.0	6.0	< 2.0	< 2.0	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	11.67	11.84	11.38	12.11	11.52	11.45	mg/l	-
18	Potassium (as K)	3.50	3.55	3.66	3.78	3.57	3.60	mg/l	-
19	Fluoride (as F)	0.80	0.70	0.90	0.90	0.70	0.50	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	23.2	23.3	23.0	23.0	23.3	23.3	°C	-
32	Residual Free Chlorine	0.09	0.11	0.13	0.11	0.15	0.10	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 18:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF JANUARY 2024

SI	Parameter			Results	Obtained			Unit	Permissible
No		Near AFR Drinking Water Point (L – 2)	Colony Drinking Water Point	Guest House Canteen Drinking Water Point	Near CVRM - 2 Drinking Water Point (Line – 1)	Near Main Gate Canteen Drinking Water Point (Line – 2)	Near Cooler Drinking Water Point(L – 3)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.1	0.1	2.9	0.1	0.9	1.6	NTU	5.0
2	pH Value	7.48	7.91	7.97	7.96	7.87	7.92	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	212.85	220.88	216.86	228.91	204.82	220.88	mg/l	600
4	Iron (as Fe)	0.19	0.03	0.28	0.26	0.29	0.29	mg/l	0.3
5	Chlorides (as Cl)	15.99	21.99	17.99	17.99	17.99	17.99	mg/l	1000
6	Total Dissolved Solids	272	282	278	269	275	278	mg/l	2000
7	Electrical Conductivity	431	441	440	430	436	439	µS/cm	-
8	Calcium (as Ca)	51.51	48.28	33.80	41.85	49.89	43.45	mg/l	200
9	Magnesium (as Mg)	20.49	24.39	32.20	30.25	19.52	27.33	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5

SI	Parameter				Unit	Permissible			
No		Near AFR Drinking Water Point (L – 2)	Colony Drinking Water Point	Guest House Canteen Drinking Water Point	Near CVRM - 2 Drinking Water Point (Line – 1)	Near Main Gate Canteen Drinking Water Point (Line – 2)	Near Cooler Drinking Water Point(L – 3)		Limit in absence of Alternate Source as per IS 10500: 2012
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	24.06	24.06	23.54	18.83	21.04	23.32	mg/l	400
13	Total Nitrate (as NO ₃)	3.05	2.31	5.70	2.46	4.66	< 2.20	mg/l	45
14	Total Alkalinity (as CaCO ₃)	152	164	164	156	164	172	mg/l	600
15	Acidity	8.0	< 2.0	< 2.0	< 2.0	10	< 2.0	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	15.85	16.35	16.55	16.47	16.42	16.72	mg/l	-
18	Potassium (as K)	3.34	3.41	3.39	3.42	3.41	3.37	mg/l	-
19	Fluoride (as F)	0.5	0.6	0.6	0.8	1.0	0.70	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	22.1	22.2	22.2	22.2	22.2	22.2	٥C	-
32	Residual Free Chlorine	0.12	0.09	0.09	0.15	0.13	0.19	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 19:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2024

SI	Parameter			Results	Obtained			Unit	Permissible
No		Spandan Dispensary Drinking Water Point	Drinking Water point General Office Ground Floor	Near Workers' Canteen Drinking Water Point (Line - 2)	Near Clay Gate Drinking Water Point(Line – 1)	Drinking Water point Near KHD section Office (Line – 1)	Near Workers' Canteen Drinking Water Point (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.1	0.1	0.1	0.1	0.1	0.90	NTU	5.0
2	pH Value	7.76	7.92	7.87	8.05	7.90	7.96	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	216.86	216.86	216.86	216.86	204.82	224.89	mg/l	600
4	Iron (as Fe)	0.28	0.11	0.10	0.14	0.16	0.29	mg/l	0.3
5	Chlorides (as Cl)	27.99	24.99	26.99	28.99	24.99	24.99	mg/l	1000
6	Total Dissolved Solids	278	268	268	277	272	272	mg/l	2000
7	Electrical Conductivity	435	426	424	440	429	429	µS/cm	-
8	Calcium (as Ca)	54.73	46.68	40.24	43.45	35.41	53.12	mg/l	200
9	Magnesium (as Mg)	19.52	24.39	28.29	26.35	28.30	22.44	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	17.36	16.81	16.47	16.36	15.68	14.11	mg/l	400
13	Total Nitrate (as NO ₃)	< 2.20	< 2.20	< 2.20	< 2.20	3.24	3.19	mg/l	45
14	Total Alkalinity (as CaCO ₃)	140	136	180	184	176	164	mg/l	600
15	Acidity	6.0	< 2.0	< 2.0	< 2.0	6.0	8.0	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	12.67	12.20	12.18	13.36	12.11	12.35	mg/l	-
18	Potassium (as K)	3.43	3.43	3.41	3.48	3.38	3.45	mg/l	-
19	Fluoride (as F)	0.7	0.2	0.3	0.6	0.7	0.90	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02

SI	Parameter			Results	Obtained			Unit	Permissible
No		Spandan Dispensary Drinking Water Point	Drinking Water point General Office Ground Floor	Near Workers' Canteen Drinking Water Point (Line - 2)	Near Clay Gate Drinking Water Point(Line – 1)	Drinking Water point Near KHD section Office (Line – 1)	Near Workers' Canteen Drinking Water Point (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	24.3	24.3	24.3	24.3	24.3	24.2	٥C	-
32	Residual Free Chlorine	0.19	0.20	0.18	0.24	0.11	0.10	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 20:

DRINKING WATER QUALITY RESULT FOR THE MONTH OF MARCH 2024

SI	Parameter			Results	Obtained			Unit	Permissible
No		Near Main Gate Drinking Water Point (Line – 1)	Drinking Water point CPP Office Pantry Room(Line – 2)	Drinking Water Point Near KHD Workers' Canteen(Line – 1)	Drinking Water Point near Cooler Area (Line – 2)	Drinking WaterPoint Near New Weigh Bridge (DSp Unit)	Drinking Water Point Near Coal Mill (DSP Unit)		Limit in absence of Alternate Source as per IS 10500: 2012
1	Turbidity	0.70	0.30	0.10	1.0	0.90	0.30	NTU	5.0
2	pH Value	7.69	7.80	7.72	7.76	7.79	7.82	-	6.5 – 8.5
3	Total Hardness (as CaCO ₃)	212.16	199.92	220.32	199.92	199.92	195.84	mg/l	600
4	Iron (as Fe)	0.29	0.18	0.14	0.20	0.22	0.28	mg/l	0.3
5	Chlorides (as Cl)	23.65	22.66	36.46	23.65	24.64	22.66	mg/l	1000
6	Total Dissolved Solids	269	265	294	264	272	262	mg/l	2000
7	Electrical Conductivity	424	420	461	419	428	412	µS/cm	-
8	Calcium (as Ca)	44.15	44.15	39.25	32.71	34.34	35.98	mg/l	200
9	Magnesium (as Mg)	24.78	21.81	29.74	28.75	27.76	25.77	mg/l	100
10	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
11	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.3
12	Sulfate (as SO ₄)	14.96	13.26	14.61	12.55	13.71	11.66	mg/l	400
13	Total Nitrate (as NO ₃)	4.66	< 2.20	3.39	2.93	2.93	4.15	mg/l	45
14	Total Alkalinity (as CaCO ₃)	164	168	176	164	168	168	mg/l	600
15	Acidity	8.0	< 2.0	< 2.0	< 2.0	< 2.0	8.0	mg/l	-
16	Sulphide (as H ₂ S)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	0.05
17	Sodium (as Na)	11.14	10.31	10.98	10.63	10.47	10.42	mg/l	-
18	Potassium (as K)	9.81	6.87	5.04	6.88	6.87	4.84	mg/l	-
19	Fluoride (as F)	0.80	0.70	0.60	0.60	0.40	0.80	mg/l	1.5
20	Cadmium (as Cd)	ND	ND	ND	ND	ND	ND	mg/l	0.003
21	Lead (as Pb)	ND	ND	ND	ND	ND	ND	mg/l	0.01
22	Arsenic (as As)	ND	ND	ND	ND	ND	ND	mg/l	0.05
23	Mercury (as Hg)	ND	ND	ND	ND	ND	ND	mg/l	0.001
24	Selenium (as Se)	ND	ND	ND	ND	ND	ND	mg/l	0.01
25	Nickel (as Ni)	ND	ND	ND	ND	ND	ND	mg/l	0.02
26	Zinc (as Zn)	ND	ND	ND	ND	ND	ND	mg/l	15.0
27	Total Chromium (as Cr)	ND	ND	ND	ND	ND	ND	mg/l	0.05
28	Colour	< 5	< 5	< 5	< 5	< 5	< 5	Hazen	15
29	Odour	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
30	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	-	Agreeable
31	Temperature	27.3	27.4	27.3	27.2	27.3	27.2	٥C	-
32	Residual Free Chlorine	0.14	0.10	0.12	0.20	0.11	0.16	mg/l	1.0 (min)
33	Total Bacterial Count	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent
34	E coli	Absent	Absent	Absent	Absent	Absent	Absent	Nos/100ml	Absent

Table No 21:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF OCTOBER 2023

SI	Parameter		Results	Obtained		Unit	Surface Water Quality
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Standard as per IS: 2296 (Class C)
1	pH Value	7.10	7.34	7.29	7.52	-	6.5 – 8.5
2	Electrical Conductivity	312	365	434	350	µS/cm	-
3	Total Dissolved Solids	187	215	256	207	mg/l	1500
4	Total Hardness (as CaCO ₃)	128	156	172	168	mg/l	-
5	Chlorides (as Cl)	10.84	14.78	24.64	13.79	mg/l	600
6	Sulfate (as SO ₄)	11.06	21.54	32.37	14.32	mg/l	400
7	Total Nitrate (as NO ₃)	< 2.20	3.20	< 2.20	2.70	mg/l	50
8	Fluoride (as F)	0.40	1.0	0.90	0.80	mg/l	1.5
9	Calcium (as Ca)	38.47	43.29	44.89	43.29	mg/l	-
10	Magnesium (as Mg)	7.78	11.66	14.58	14.58	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.39	0.59	0.46	0.11	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.3	6.1	6.4	6.4	mg/l	4
25	BOD 5 days at 20ºC	01	03	02	02	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	3.52	3.52	7.04	3.52	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
	(as C ₆ H₅OH)						
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	10	1000	1000	10	Nos/100ml	5000

Table No 22:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF NOVEMBER 2023

SI	Parameter		Results	Obtained		Unit	Surface Water Quality
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Standard as per IS: 2296 (Class C)
1	pH Value	7.36	7.45	7.21	7.34	-	6.5 – 8.5
2	Electrical Conductivity	401	406	514	405	µS/cm	-
3	Total Dissolved Solids	241	245	309	243	mg/l	1500
4	Total Hardness (as CaCO ₃)	172	184	232	200	mg/l	-
5	Chlorides (as Cl)	18.99	23.99	32.99	18.72	mg/l	600
6	Sulfate (as SO ₄)	23.61	28.39	41.41	24.93	mg/l	400
7	Total Nitrate (as NO ₃)	6.23	< 2.20	6.76	2.69	mg/l	50
8	Fluoride (as F)	0.8	1.0	0.9	0.8	mg/l	1.5
9	Calcium (as Ca)	40.08	49.69	62.53	40.08	mg/l	-
10	Magnesium (as Mg)	17.49	14.58	18.45	24.3	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.42	0.51	0.52	0.16	mg/l	50

SI	Parameter		Results	Obtained		Unit	Surface Water Quality
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Standard as per IS: 2296 (Class C)
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.3	6.3	6.4	6.4	mg/l	4
25	BOD 5 days at 20ºC	03	4.0	02	2.0	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	7.04	7.04	7.04	7.04	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
	(as C ₆ H₅OH)					-	
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	10	1000	1000	10	Nos/100ml	5000

Table No 23:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF DECEMBER 2023

SI	Parameter		Results C	btained		Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
1	pH Value	7.46	7.54	7.53	7.80	-	6.5 – 8.5
2	Electrical Conductivity	406	465	470	385	µS/cm	-
3	Total Dissolved Solids	244	279	282	231	mg/l	1500
4	Total Hardness (as CaCO ₃)	164	184	188	172	mg/l	-
5	Chlorides (as Cl)	16.99	24.99	24.99	17.99	mg/l	600
6	Sulfate (as SO ₄)	27.70	35.17	32.88	23.78	mg/l	400
7	Total Nitrate (as NO ₃)	< 2.20	2.76	3.01	2.69	mg/l	50
8	Fluoride (as F)	0.80	0.90	0.90	0.70	mg/l	1.5
9	Calcium (as Ca)	46.49	41.68	46.49	48.09	mg/l	-
10	Magnesium (as Mg)	11.66	19.44	17.49	12.64	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.46	0.51	0.49	0.14	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.3	6.2	6.2	6.3	mg/l	4
25	BOD 5 days at 20ºC	01	02	02	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	7.04	8.8	10.56	5.28	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05

SI	Parameter		Results C	Unit	Surface Water		
30	Phenolic Compounds (as C₀H₅OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	10	1000	1000	10	Nos/100ml	5000

Table No 24:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF JANUARY 2024

SI	Parameter		Result	s Obtained		Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
1	pH Value	7.60	7.68	7.35	7.78	-	6.5 – 8.5
2	Electrical Conductivity	597	643	752	515	µS/cm	-
3	Total Dissolved Solids	359	386	451	309	mg/l	1500
4	Total Hardness (as CaCO ₃)	220.88	273.09	281.12	240.96	mg/l	-
5	Chlorides (as Cl)	33.99	41.99	52.98	24.99	mg/l	600
6	Sulfate (as SO ₄)	32.35	41.19	56.94	24.79	mg/l	400
7	Total Nitrate (as NO ₃)	3.11	3.01	2.98	2.76	mg/l	50
8	Fluoride (as F)	0.8	0.9	0.9	0.7	mg/l	1.5
9	Calcium (as Ca)	45.06	45.06	51.51	69.21	mg/l	-
10	Magnesium (as Mg)	26.35	39.04	37.08	16.59	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.48	0.59	0.49	0.44	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.3	6.1	6.3	6.2	mg/l	4
25	BOD 5 days at 20ºC	01	03	02	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	7.04	10.56	12.32	< 1.0	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	1000	1000	Absent	Nos/100ml	5000

Table No 25:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF FEBRUARY 2024

SI	Parameter		Results	Unit	Surface Water		
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		as per IS: 2296 (Class C)
1	pH Value	7.39	7.69	7.64	7.82	-	6.5 – 8.5
2	Electrical Conductivity	610	676	691	492	µS/cm	-
3	Total Dissolved Solids	366	406	415	295	mg/l	1500
4	Total Hardness (as CaCO ₃)	257.02	269.07	317.26	244.97	mg/l	-
5	Chlorides (as Cl)	34.99	50.98	49.98	25.99	mg/l	600
6	Sulfate (as SO ₄)	30.77	39.97	37.73	16.76	mg/l	400

SI	Parameter		Results	Obtained		Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
7	Total Nitrate (as NO ₃)	< 2.20	2.46	3.01	2.69	mg/l	50
8	Fluoride (as F)	0.9	0.9	0.8	0.7	mg/l	1.5
9	Calcium (as Ca)	74.04	64.38	80.48	54.73	mg/l	-
10	Magnesium (as Mg)	17.56	26.35	28.29	26.35	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.52	0.51	0.48	0.14	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.3	6.2	6.3	6.3	mg/l	4
25	BOD 5 days at 20°C	02	02	02	02	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	14.08	8.8	10.56	7.04	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	Absent	Absent	Absent	Nos/100ml	5000

Table No 26:

SURFACE WATER QUALITY RESULT FOR THE MONTH OF MARCH 2024

SI	Parameter		Results	Obtained		Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		as per IS: 2296 (Class C)
1	pH Value	7.53	7.46	6.61	7.60	-	6.5 – 8.5
2	Electrical Conductivity	675	682	830	425	µS/cm	-
3	Total Dissolved Solids	405	410	515	255	mg/l	1500
4	Total Hardness (as CaCO ₃)	281.82	277.44	314.16	199.92	mg/l	-
5	Chlorides (as Cl)	49.28	49.28	62.08	21.68	mg/l	600
6	Sulfate (as SO ₄)	30.52	31.62	47.25	10.75	mg/l	400
7	Total Nitrate (as NO ₃)	< 2.20	2.39	2.46	2.69	mg/l	50
8	Fluoride (as F)	0.50	0.60	0.50	0.40	mg/l	1.5
9	Calcium (as Ca)	67.05	50.69	53.96	40.88	mg/l	-
10	Magnesium (as Mg)	30.73	36.68	43.62	23.79	mg/l	-
11	Copper (as Cu)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	1.5
12	Iron (as Fe)	0.20	0.22	0.36	0.19	mg/l	50
13	Manganese (as Mn)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	-
14	Zinc (as Zn)	< 0.02	< 0.02	< 0.02	< 0.02	mg/l	15
15	Total Arsenic (as As)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.2
16	Mercury (as Hg)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	-
17	Lead (as Pb)	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
18	Cadmium (as Cd)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	0.01
19	Hex. Chromium (as Cr ⁺⁶)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
20	Selenium (as Se)	< 0.01	< 0.01	< 0.01	< 0.01	mg/l	0.05
21	Colour	< 5	< 5	< 5	< 5	Hazen	300
22	Odour	Agreeable	Agreeable	Agreeable	Agreeable	-	-

SI	Parameter		Results	Obtained		Unit	Surface Water
No		Liploi Nadi Upstream (Shirdi Sai Temple)	Liploi Nadi (Muncipality Dump Yard)	Liploi Nadi Downstream (Poda Nadi)	Amaghat Nadi		Quality Standard as per IS: 2296 (Class C)
23	Taste	Agreeable	Agreeable	Agreeable	Agreeable	-	-
24	Dissolved Oxygen (Min.)	6.2	6.1	6.1	6.3	mg/l	4
25	BOD 5 days at 20°C	01	02	02	01	mg/l	3
26	Oil & Grease	< 0.10	< 0.10	< 0.10	< 0.10	mg/l	0.1
27	Free Carbon Dioxide (as CO ₂)	7.04	10.56	10.56	8.80	mg/l	-
28	Free Ammonia (as NH ₃)	< 0.012	< 0.012	< 0.012	< 0.012	mg/l	-
29	Cyanide (as CN)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.05
30	Phenolic Compounds (as C ₆ H ₅ OH)	< 0.002	< 0.002	< 0.002	< 0.002	mg/l	0.005
31	Anionic Detergents (as MBAS)	< 0.05	< 0.05	< 0.05	< 0.05	mg/l	1.0
32	Total Coliforms	Absent	Absent	Absent	Absent	Nos/100ml	5000

Table No 27:

27.1 EFFLUENT WATER QUALITY RESULT OF ETP INLET

SI No	Parameters		Results Obtained							
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH			
1	pH Value	7.17	7.19	8.18	7.25	7.95	7.33	-		
2.	Total Suspended Solids	26.1	386.9	4.2	20.8	4.0	279.3	mg/l		
3.	Oil & Grease	2.6	2.2	2.2	2.2	2.2	2.4	mg/l		
4.	BOD 5days at 20°C	140	120	115	120	110	80	mg/l		
5.	COD	430.16	365.10	340.10	365.60	360.26	250.21	mg/l		

27.2 EFFLUENT WATER QUALITY RESULT OF ETP OUTLET

SI No	Parameters		Results Obtained							
		OCTOBER	NOVEMBER	DECEMBER	JANUARY	FEBRUARY	MARCH	Conditions		
1	pH Value	7.05	7.10	7.96	7.34	7.89	7.30	5.5 – 9.0	-	
2.	Total Suspended Solids	15.8	< 2.5	< 2.5	6.3	2.6	< 2.5	100	mg/l	
3.	Oil & Grease	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	10	mg/l	
4.	BOD 5days at 20°C	80	50	52	50	50	05	-	mg/l	
5.	COD	245.60	155.16	150.16	159.80	165.26	20.261	-	mg/l	

Table No 28 :

EFFLUENT WATER QUALITY RESULT OF STP OUTLET

SI No	Parameters			Permissible Limit as per CTO Conditions	Unit				
		OCT	NOV	DEC	JAN	FEB	MAR		
1	pH Value	7.31	7.48	7.48	7.39	7.51	7.45	6.5 – 9.0	-
2.	Total Suspended Solids	3.0	18.5	16.0	12.4	< 2.5	9.3	100	mg/l
3.	BOD 5days at 20°C	11	10	10	13	12	12	30	mg/l
4.	Fecal Coliform	100	100	100	100	100	37.260	1000	mg/l
5.	COD	35.16	32.160	30.15	40.160	38.160	100	-	mg/l

Table No 29:

EFFLUENT WATER QUALITY RESULT OF STP OUTLET DSP UNIT

SI No	Parameters		Permissible Limit as per CTO	Unit					
		OCT	NOV	DEC	JAN	FEB	MAR	Conditions	
1	pH Value	7.25	7.51	7.30	7.18	7.26	7.40	6.5 – 9.0	-
2.	Total Suspended Solids	12.2	< 2.5	14.4	19.3	14.2	5.8	100	mg/l
3.	BOD 5days at 20°C	17	08	12	18	10	06	30	mg/l
4.	COD	54.12	26.160	40.16	55.160	35.36	19.160	-	mg/l
5.	Fecal Coliform	100	100	100	100	100	100	1000	mg/l

Table No 30:

SOIL QUALITY RESULT FOR THE MONTH OF OCTOBER 2023

SI. No.	Parameter	Unit	Konark Vihar Colony Area	In Front Of HR Office (Line – 1)	132 kv Station Area (Line – 2)	Line – 3 AFR Area (Near CAAQMS)
1.	Colour	-	Brownish	Greyish	Greyish	Greyish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Sandy Clay Loam	Silty Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.6	1.8	1.5	1.4
5.	pH (1:2 Suspension)	-	7.85	8.09	7.89	7.82
6.	Iron	mg/kg	4.24	4.88	3.46	4.86
7.	Calcium	mg/kg	174	179	193	156
8.	Available Potassium (as K ₂ O)	Kg/ha	470.88	479.16	427.8	297.0
9.	Organic Carbon	%	0.95	1.98	1.65	0.68
10.	Available Nitrogen (as N)	Kg/ha	50.176	62.72	50.17	50.176
11.	Manganese	mg/kg	7.82	7.95	8.25	5.85
12.	Infiltration Rate	cm/hr	5.85	4.65	4.82	5.22
13.	Porosity	mg/m ³	0.22	0.20	0.22	0.13
14.	Moisture Content	%	18.42	16.56	19.82	17.86
16.	Chloride	mg/kg	0.24	0.18	0.22	0.18
17.	Sulphate	mg/kg	0.65	0.58	0.54	0.62

Table No 31:

SOIL QUALITY RESULT FOR THE MONTH OF NOVEMBER 2023

SI. No.	Parameter	Unit	Guest House Area	Tuck Parking Area(Line -2)	ETP Area	Near New Weigh Bridge
1.	Colour	-	Brownish	Greyish	Reddish	Greyish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Silty Clay Loam	Silty Clay Loam	Sandy Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.3	1.2	1.3	1.4
5.	pH (1:2 Suspension)	-	7.45	8.02	7.91	8.05
6.	Iron	mg/kg	4.8	5.21	6.05	4.86
7.	Calcium	mg/kg	168	172	179	156
8.	Available Potassium (as K ₂ O)	Kg/ha	426.24	289.44	348.96	313.68
9.	Organic Carbon	%	1.3	1.01	0.88	0.8
10.	Available Nitrogen (as N)	Kg/ha	62.72	112.9	62.72	137.98
11.	Manganese	mg/kg	9.61	9.23	9.76	5.85
12.	Infiltration Rate	cm/hr	6.54	4.26	4.77	5.22
13.	Porosity	mg/m ³	0.1956	0.2008	0.2122	0.13

SI. No.	Parameter	Unit	Guest House Area	Tuck Parking Area(Line -2)	ETP Area	Near New Weigh Bridge
14.	Moisture Content	%	21.26	22.57	22.84	17.86
16.	Chloride	mg/kg	0.13	0.18	0.10	0.18
17.	Sulphate	mg/kg	0.62	0.54	0.48	0.62

Table No 32:

SOIL QUALITY RESULT FOR THE MONTH OF DECEMBER 2023

SI. No.	Parameter	Unit	Line 1 AFR Area	Khandakavya Garden	Water Harvesting pond Line – 2	Near Liquid AFR Area(DSP Unit)
1.	Colour	-	Brownish	Grevish	Reddish	Grevish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Silty Clay Loam	Silty Clay Loam	Sandy Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.20	1.3	1.4	1.42
5.	pH (1:2 Suspension)	-	8.45	8.13	8.29	8.76
6.	Iron	mg/kg	3.88	4.18	5.27	5.08
7.	Calcium	mg/kg	194	222	198	188
8.	Available Potassium (as K ₂ O)	Kg/ha	124.44	273.72	363	182.88
9.	Organic Carbon	%	0.69	< 0.5	1.13	0.65
10.	Available Nitrogen (as N)	Kg/ha	100.35	150.53	175.62	125.44
11.	Manganese	mg/kg	10.04	9.43	10.22	9.02
12.	Infiltration Rate	cm/hr	5.84	6.15	3.42	9.64
13.	Porosity	mg/m ³	0.1992	0.2415	0.2210	0.1785
14.	Moisture Content	%	14.54	15.78	18.34	32.0
16.	Chloride	mg/kg	0.17	0.21	0.13	0.18
17.	Sulphate	mg/kg	0.84	0.68	0.41	0.76

Table No 33:

SOIL QUALITY RESULT FOR THE MONTH OF JANUARY 2024

SI. No.	Parameter	Unit	STP AREA LINE – 2	KONARK VIHAR	HR OFFICE LINE – 1	AFR AREA (DSP UNIT)
1.	Colour	-	Greyish	Greyish	Greyish	Greyish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Sandy Clay Loam	Silty Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.2	1.5	1.4	1.4
5.	pH (1:2 Suspension)	-	8.14	8.21	8.06	8.42
6.	Iron	mg/kg	4.8	5.21	6.05	7.02
7.	Calcium	mg/kg	169	170	163	157
8.	Available Potassium (as K ₂ O)	Kg/ha	582.24	310.76	186.24	143.4
9.	Organic Carbon	%	1.18	1.23	0.59	0.81
10.	Available Nitrogen (as N)	Kg/ha	188.16	75.26	75.26	75.26
11.	Manganese	mg/kg	9.61	9.23	9.76	5.02
12.	Infiltration Rate	cm/hr	6.54	4.26	4.77	7.39
13.	Porosity	mg/m ³	0.1857	0.1922	0.2004	0.1287
14.	Moisture Content	%	21.26	22.57	22.84	20.74
16.	Chloride	mg/kg	0.18	0.16	0.23	0.26
17.	Sulphate	mg/kg	0.62	0.71	0.8	0.67

Table No 34:

SOIL QUALITY RESULT FOR THE MONTH OF FEBRUARY 2024

SI. No.	Parameter	Unit	Inside Store Yard (Line – 1)	AFR Area (Line – 2)	Kiskindhaban Area	New Weigh Bridge(DSP Unit)
1.	Colour	-	Greyish	Greyish	Greyish	Greyish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Sandy Clay Loam	Silty Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.4	1.4	1.3	1.8
5.	pH (1:2 Suspension)	-	7.60	8.50	7.30	7.90
6.	Iron	mg/kg	3.9	6.13	5.4	6.82
7.	Calcium	mg/kg	178	184	172	174
8.	Available Potassium (as K ₂ O)	Kg/ha	318	310.76	350.4	133.2
9.	Organic Carbon	%	3.27	0.94	1.90	< 0.50
10.	Available Nitrogen (as N)	Kg/ha	112.89	87.81	213.24	12.54
11.	Manganese	mg/kg	8.61	8.63	8.74	5.02
12.	Infiltration Rate	cm/hr	6.54	4.26	4.77	7.39
13.	Porosity	mg/m ³	0.2015	0.1978	0.21	0.1350
14.	Moisture Content	%	22.77	21.24	20.87	22.7
16.	Chloride	mg/kg	0.14	0.19	0.27	0.25
17.	Sulphate	mg/kg	0.58	0.61	0.79	0.77

Table No 35:

SOIL QUALITY RESULT FOR THE MONTH OF MARCH 2024

SI. No.	Parameter	Unit	HR Office	Guest House	132 KVA Station	AFR Line – 3
1.	Colour	-	Greyish	Greyish	Greyish	Greyish
2.	Type of Soil	-	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil	Fine Grained Soil
3.	Texture	-	Sandy Clay Loam	Silty Clay Loam	Silty Clay Loam	Silty Loam
4.	Bulk Density	gm/cm ³	1.6	1.7	1.5	1.9
5.	pH (1:2 Suspension)	-	8.08	7.40	8.01	8.30
6.	Iron	mg/kg	5.2	5.4	6.1	5.92
7.	Calcium	mg/kg	182	176	187	168
8.	Available Potassium (as K ₂ O)	Kg/ha	542.88	629.88	577.08	329.16
9.	Organic Carbon	%	0.79	1.52	1.98	< 0.50
10.	Available Nitrogen (as N)	Kg/ha	112.9	75.26	62.72	125.44
11.	Manganese	mg/kg	9.41	9.1	9.24	5.02
12.	Infiltration Rate	cm/hr	9.44	6.23	7.77	9.39
13.	Porosity	mg/m ³	0.25	0.198	0.21	0.192
14.	Moisture Content	%	18.62	17.24	16.8	18.9
16.	Chloride	mg/kg	0.14	0.21	0.22	0.35
17.	Sulphate	mg/kg	0.48	0.52	0.48	0.82

Table No: 36:

NOISE LEVEL MONITORING DATA From 01.10.2023 to 31.03.2024

Month	Location	L _{eq} dB(A)	L _{eq} dB(A)
		Day Time	Night Time
Oct	Main gate Near Canteen (Line – 1)	56.3	54.1
	Payloader Garage (Line – 1)	61.3	57.0
	Guest House Area	57.2	53.1
	CCR Building(Line – 2)	72.5	72.3

Month	Location	L _{eq} dB(A)	L _{eq} dB(A)
		Day Time	Night Time
	Konark Vihar	52.8	58.0
	Atithi Niwas	64.2	63.7
	STP Area(DSP Unit)	57.2	58.2
	AFR Area(DSP Unit)	56.8	45.7
Nov	Workshop Area(Line – 2)	61.5	61.1
	Lime Stone Transfer Point(Line – 2)	69.0	69.3
	Guest House Area	51.2	43.8
	Konark Vihar	49.2	43.8
	General Store (Line – 1)	63.9	63.7
	Refractory Main Gate	62.6	65.3
	Project Area(DSP Unit)	57.7	57.0
	Store Area(DSP Unit)	60.3	57.3
Dec	Main gate Near Canteen (Line – 1)	51.0	40.0
	Pavloader Garage (Line – 1)	63.1	58.3
	Guest House Area	51.4	47.3
	Konark Vihar	46.1	37.1
	CCR Building(Line - 2)	71.4	71 1
	CPP Area(l ine -2)	59.2	57.8
	STP Area (DSP Unit)	68.2	65.7
	Near AER Storage Area (DSP Unit)	67.5	65.4
Jan	Refractory Main Gate	66.3	67.5
	General Store (Line – 1)	62.7	62.0
	Guest House Area	54.0	43.8
	Konark Vihar	40.6	33.9
	Engineering Hostel	55.9	47.6
	Workshop Area(Line 2)	58.7	58.3
	Project Gate(DSP unit)	55.6	55.3
	General Store Area(DSP Unit)	61.1	59.2
Feb	CCR Building(Line - 2)	70.6	65.5
	$\frac{\text{CPP Area}(l \text{ ine} - 2)}{2}$	59.7	57 4
	Guest House Area	51 1	40.0
	Konark Vibar	43.1	38.0
	Main gate Near Canteen (Line – 1)	56.3	54.1
	Payloader Garage (Line -1)	63.3	61.2
	STP Area (DSP Linit)	57.2	56.3
	Near AER Storage Area (DSP Linit)	67.0	55.0
Mar	Work Shop (Line 2)	50.8	57.0
	Engineering Hestel	57.3	52.4
	Cuest House Area	57.5	40.7
	Guest House Area		49.7
	Coporal Store Area(Line 1)	41.1	41.4 66 5
	Befreeten Main Cate Area	0.00	C.00
		02.2 F0.0	00.9
		50.9	45./
	Project Gate (DSP Unit)	58.8	50./